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Assignment 3

Exercise 1

The goal of this exercise is to mimic the construction of Brownian motion done in the lectures to construct the Poisson
process, which is a much simpler yet important process. Recall that Γ follows a Poisson distribution P (λ) of parameter
λ > 0 if P(Γ = k) = e−λλk/k! for all k ∈ N. We fix throughout a probability space (Ω, F ,P). Here are some simple
questions concerning Poisson random variables.

1) Let Γ ∼ P (λ) and Γ′ ∼ P (λ′), for (λ, λ′) ∈ (0, +∞)2 be P-independent. Show that Γ + Γ′ ∼ P (λ + λ′).

2) Suppose that Γ ∼ P (λ) and p ∈ (0, 1). Let (Xi)i∈N⋆) be P–i.i.d. random variables P-independent of Γ with
P[Xi = 1] = 1 − P[Xi = 0] = p, i ∈ N⋆, and define Γp :=

∑Γ
i=1 Xi and Γ1−p :=

∑Γ
i=1(1 − Xi). Show that

Γp ∼ P (pλ), Γ1−p ∼ P ((1 − p)λ) and that Γp and Γ1−p are P-independent.

3) Determine the characteristic function of P (λ).

We are now going to construct a continuous-time process N := (Nt)t∈R+ with values in N ∪ {+∞} satisfying the
following properties (N is called a Poisson process of rate 1):

• N0 = 0, P–a.s.;

• Nt ∼ P (t), for all t > 0;

• N has P-independent and stationary increments, that is for all n ∈ N⋆ and any 0 ≤ t0 < t1 < · · · < tn, we have
that (Nti

− Nti−1 : i ∈ {1, . . . , n}) are P-independent and for any 0 ≤ s < t, Nt − Ns and Nt−s have the same law;

• t 7−→ Nt is right-continuous and non-decreasing.

The goal now is to construct such a process using a countable collection of P–i.i.d. Poisson random variables with
parameter 1 and an independent countable number of i.i.d. Bernoulli random variables with parameter 1/2.

4) Show iteratively that we can construct a process (N ′
t)t∈Dn satisfying the first three properties above where for

any n ∈ N, Dn := 2−nN. Check that t 7−→ N ′
t defined on ∪n∈NDn is P–a.s. non-decreasing.

5) Now define Nt := inf{N ′
s : s > t, s ∈ ∪n∈NDn} for t ≥ 0. Show that N is a Poisson process.

We now give another construction of a Poisson process. Recall that we say that a random variable τ has an exponential
distribution with parameter λ ≥ 0 if its law has a density with respect to lebesgue measure given by λe−λt1(0,∞)(t),
t ∈ R. Let (τi)i∈N⋆ be P–i.i.d. exponentially distributed random variables with parameter 1, and set Nt := sup{k ≥
0: τ1 + · · · + τk ≤ t}, t ≥ 0.

6) Show that N0 = 0, P–a.s., and that t 7−→ Nt is right-continuous and non-decreasing.

7) Show for any 1 ≤ i ≤ j (by induction on j − i or otherwise) that the law of τ[i,j] := τi + · · · + τj is has a density
with respect to Lebesgue measure given by tj−ie−t/(j − i)!1(0,∞)(t) (this is a Gamma distribution).

8) By explicit computation show that N is a Poisson process.

1) Let k ∈ N, then

P[Γ + Γ′ = k] =
k∑

ℓ=0
P[Γ = ℓ, Γ′ = k − ℓ] =

k∑
l=0

e−λ λℓ

ℓ! e−λ′ (λ′)k−ℓ

(k − ℓ)! = e−(λ+λ′)

k!

k∑
ℓ=0

(
k

ℓ

)
λℓ(λ′)k−ℓ = e−(λ+λ′) (λ + λ′)k

k! ,
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as required (note that we used independence in the third equality).

2) Take (k, ℓ) ∈ N2 and observe that

P[Γp = k, Γ1−p = ℓ] = P
[
Γ = k + ℓ, X1 + · · · + Xk+ℓ = k

]
= P[Γ = k + ℓ]P[X1 + · · · + Xk+ℓ = k]

= e−λ λk+ℓ

(k + ℓ)!

(
k + ℓ

k

)
pk(1 − p)ℓ

= e−λp (λp)k

k! e−λ(1−p) (λ(1 − p))ℓ

ℓ! .

Here we used that Γ and X1+· · ·+Xk+ℓ are P-independent and that the latter random variable is B(k+ℓ, p)
distributed. The claim follows.

3) The characteristic function ϕ of P (λ) is given by

ϕ(θ) =
∞∑

k=0
eiθke−λ λk

k! = eλ(eiθ−1) .

4) Let (Γi)i∈N⋆ be i.i.d. P (1) random variables with values in N. For t ∈ D0 = N, we let N ′
t := Γ1+· · ·+Γt (with

the convention N ′
0 = 0). Independence of increments is immediate from the construction, and stationarity

and N ′
t ∼ P (t) are clear from 1). Now suppose we have constructed (N ′

t)t∈Dn
satisfying the first three

properties of the definition and we need to now define the process on Dn+1 \Dn. For t ∈ Dn+1 \Dn, observe
that t ± 2−(n+1) ∈ Dn. Let (Xt

i )i∈N⋆ be i.i.d Bernoulli 1/2 random variables (independent of everything
else in the construction) and set

N ′
t := N ′

t−2−(n+1) +
N ′

t+2−(n+1) −N ′
t−2−(n+1)∑

i=1
Xt

i .

By part 2) with p = 1/2, (N ′
t − N ′

t−2−(n+1) , N ′
t+2−(n+1) − N ′

t : t ∈ Dn+1 \ Dn) are independent and all P (2−(n+1))
distributed. The first three properties are then checked to be satisfied using 1). N ′ is P–a.s. non-
decreasing: indeed, for s < t ∈ ∪n∈NDn, say (s, t) ∈ D2

n0
for some n0 ∈ N, N ′

t − N ′
s ∼ P (t − s) so P[N ′

t − N ′
s ≥

0] = 1. Since ∪n∈NDn is countable, the claim follows.

5) First, 0 ≤ EP[N0] ≤ lim infn→+∞ EP[N ′
2−n ] = lim infn→∞ 2−n = 0 by Fatou’s lemma, and so N0 = 0, P–a.s.

Since N ′ is P–a.s. non-decreasing, for fixed t ≥ 0 and (tk) ⊂ ∪n∈NDn with tk ↓ t, we have N ′
tk

→ Nt, |P–a.s.
as k → +∞. For example by inspecting the characteristic function, we see that therefore Nt ∼ P (t).
Stationarity and independence of increments follows using an analogous argument. Finally, it is easy to
see from the definition that N is right-continuous and non-decreasing.

6) It is in fact clear that N0 = 0. Moreover, N is non-decreasing, since increasing t in the definition of Nt

enlarges the set over which the supremum is taken. For right-continuity, fix t ≥ 0. If Nt = ∞ (which in
fact happens with zero probability), N is clearly right-continuous at t. Otherwise, by definition Ns = Nt

for all s ∈ [t, τ1 + · · · + τNt+1) (this interval is non-empty by the definition of Nt).

7) We induct on j − i. The case j − i = 0 is clear by the definition. For the induction step, note that
τ[i,j] = τ[i,j−1] + τj for j − i ≥ 1 and that the two terms in the sum are independent. From the induction
hypothesis we know the law of the two terms and (by convolution of the densities) we obtain that the
corresponding density is∫

R

sj−i−1e−s

(j − i − 1)!1(0,∞)(s)e−(t−s)1(0,∞)(t − s)ds = e−t1(0,∞)(t)
∫ t

0

sj−i−1

(j − i − 1)!ds = tj−i

(j − i)! e
−t1(0,∞)(t).

8) Fix n ∈ N and 0 = t0 < t1 < · · · < tn. Then for 0 = k0 ≤ k1 ≤ · · · ≤ kn,

P
[
Nti

= ki, for i ∈ {1, . . . , n}
]

= P
[
τ[1,i] ∈ (tj−1, tj ], for i ∈ {kj−1 + 1, . . . , kj} and j ∈ {1, . . . , n}, τ[1,kn+1] > tn

]
= P

[
τ[1,i] ∈ (tj−1, tj ] for i ∈ {kj−1 + 1, . . . , kj} and j ∈ {1, . . . , n − 1}, An

]
,
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where An is the event (this is best seen by drawing a timeline for the jumps of the process)

An :=
{

τkn−1+1 > tn−1 − τ[1,kn−1], τ[kn−1+1,kn] − (tn−1 − τ[1,kn−1]) ∈ (0, tn − tn−1),
τkn+1 > tn − tn−1 − (τ[kn−1+1,kn] − (tn−1 − τ[1,kn−1]))

}
.

We now condition on τ1, . . . , τkn−1 and observe that by the memoryless property of the exponential
distribution, conditionally on τkn−1+1 > tn−1 − τ[1,kn−1], τ̃ = τkn−1+1 − (tn−1 − τ [1,kn−1]) is exponentially
distributed and by the previous questions

τ[kn−1+1,kn] − (tn−1 − τ[1,kn−1]) = τ̃ +
∑

kn−1+1<i≤kn

τi

(conditioned on τ̃ > 0) is therefore distributed according to a Gamma distribution with shape parameter
kn − kn−1 and rate 1. Therefore whenever kn − kn−1 ≥ 1, we get

P
[
An

∣∣τ1, . . . , τkn−1

]
= e−(tn−1−τ[1,kn−1])

∫ tn−tn−1

0

e−ttkn−kn−1−1

(kn − kn−1 − 1)!e
−(tn−tn−1−t)dt

= e−(tn−1−τ[1,kn−1]) · e−(tn−tn−1)(tn − tn−1)kn−kn−1

(kn − kn−1)!

= P[τ[1,kn−1+1] > tn−1
∣∣τ1, . . . , τkn−1

]e−(tn−tn−1)(tn − tn−1)kn−kn−1

(kn − kn−1)! ,

and one obtains the same result for kn −kn−1 = 0 using a similar argument. Combining everything finally
yields

P
[
Nti

= ki, for i ∈ {1, . . . , n}
]

= P
[
Nti

= ki, for i ∈ {1, . . . , n − 1}
]e−(tn−tn−1)(tn − tn−1)kn−kn−1

(kn − kn−1)! .

Since P–a.s., Nti ∈ N for all i ∈ {1, . . . , n}, this uniquely characterises the law of the vector (Nti)i∈1,...,n}
and we see that N is indeed a Poisson process (of rate 1).

Exercise 2
We now use the Poisson process to construct some more complicated processes with independent stationary increments,
that jump at a random dense set of times. Let (N (n))n∈Z be a sequence of i.i.d. Poisson processes and define

Yt :=
∞∑

n=0
4−nN

(n)
3nt , and Zt :=

∑
n∈Z

4−nN
(n)
3nt , t ≥ 0.

Answer the questions below.

1) Compute EP[Yt] for t ≥ 0. Show that Yt < +∞, P–a.s. for t ≥ 0 and that Y has P-independent and stationary
increments.

2) Fix t ≥ 0. Show that P–a.s., Y is continuous at t.

3) Show that P–almost surely, for all intervals (a, b) ⊂ [0, +∞), Y is not continuous on (a, b). Show that P–a.s., Y
is increasing on [0, +∞).

4) What can you say about EP[Zt]?

5) Fix T > 0. Show that P–a.s., there exists n0 ∈ N such that N
(−n)
3−nT = 0 for all n ≥ n0. Deduce that the sum in

the definition of Zt converges P–a.s.

6) Show that Z and (4Zt/3 : t ≥ 0) have the same law.
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The processes Y and Z we constructed above are examples of non-trivial subordinators (i.e. non-decreasing Lévy
processes).

1) By monotone convergence, for t ≥ 0

EP[Yt] =
∞∑

n=0
4−nEP[N (n)

3nt ] =
∞∑

n=0
(3/4)nt = 4t .

Hence EP[Yt] < +∞ and in particular, Yt < ∞, P–a.s. Since N (n) has stationary and independent incre-
ments, so does the process (4−nN

(n)
3nt)t≥0, and hence so does the sum of these independent terms.

2) Y is non-decreasing, so left-continuity at t is equivalent to Yt−t2−n −→ Yt as n → ∞. We can compute
using Yt−t2−n ≤ Yt and stationarity

EP
[ ∑

n∈N
|Yt − Yt−t2−n |

]
=

∑
n∈N

EP[Yt − Yt−t2−n ] =
∑
n∈N

EP[Yt2−n ] =
∑
n∈N

4t2−n < ∞.

So the sum in the expectation P–a.s. converges and in particular, Yt−t2−n −→ Yt, P– a.s. Right-continuity
is proved completely analogously.

3) Let A(a,b) be the event that Y is continuous on (a, b). Then clearly

∪0≤a<bA(a,b) = ∪{(p,q)∈Q2:0≤p<q}A(p,q).

So it is enough to show (since the union on the right is countable) that P[A(p,q)] = 0 for rational 0 ≤ p < q.
Observe that

A(p,q) = {Yq− = Yp} = ∩n∈N{N
(n)
3nq− − N

(n)
3np = 0},

since Y is non-decreasing. So P[A(p,q)] ≤ P
[
N

(n)
3nq− − N

(n)
3np = 0

]
= e−3n(q−p) −→ 0 as n → ∞, as required. The

fact, that Y is P–a.s. increasing is also immediate from this.

4) As in 1), EP[Zt] =
∑

n∈Z(3/4)nt which is ∞ for t > 0 and 0 for t = 0.

5) For the first claim, observe that∑
n≥0

P
[
N

(−n)
3−nT > 0

]
=

∑
n≥0

(1 − e−3−nT ) ≤
∑
n≥0

3−nT < ∞.

So by Borel–Cantelli’s lemma, P–a.s., N
(−n)
3−nT > 0 occurs for only finitely many n ≥ 0 as required. The

final claim is obvious as the defining sum of Yt and Zt only differ in finitely many terms (with negative
index).

6) We have

4Zt/3 = 4
∑
n∈Z

4−nN
(n)
3nt/3 =

∑
n∈Z

4−(n−1)N
(n)
3(n−1)t

=
∑
n∈Z

4−nN
(n+1)
3nt .

Since N (n) and N (n+1) have the same law, the claim follows.
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